From Jasewick, Algos on Java, translated to C#
Binary tree grows down, balanced binary tree (for ex. 2-3 BST or RedBlack BST is not so hi – so search in it will take only lgN)
RedBlackBST.cs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 |
using System; using System.Collections; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace RedBlackBSTExample { class RedBlackBST<Key,Value>:IEnumerable where Key:IComparable { public bool RED = true; public bool BLACK = false; private Node root; // root of the BST // BST helper node data type private class Node { public Key key; // key public Value val; // associated data public Node left, right; // links to left and right subtrees public bool color; // color of parent link, RED is TRUE, BLACK is FALSE public int size; // subtree count public Node(Key key, Value val, bool color, int size) { this.key = key; this.val = val; this.color = color; this.size = size; } } /** * Initializes an empty symbol table. */ public RedBlackBST() { } /*************************************************************************** * Node helper methods. ***************************************************************************/ // is node x red; false if x is null ? private bool isRed(Node x) { if (x == null) return false; return x.color == RED; } // number of node in subtree rooted at x; 0 if x is null private int size(Node x) { if (x == null) return 0; return x.size; } /** * Returns the number of key-value pairs in this symbol table. * @return the number of key-value pairs in this symbol table */ public int size() { return size(root); } /** * Is this symbol table empty? * @return {@code true} if this symbol table is empty and {@code false} otherwise */ public bool isEmpty() { return root == null; } /*************************************************************************** * Standard BST search. ***************************************************************************/ /** * Returns the value associated with the given key. * @param key the key * @return the value associated with the given key if the key is in the symbol table * and {@code null} if the key is not in the symbol table * @throws IllegalArgumentException if {@code key} is {@code null} */ public Value get(Key key) { if (key == null) throw new ArgumentException("argument to get() is null"); return get(root, key); } // value associated with the given key in subtree rooted at x; null if no such key private Value get(Node x, Key key) { while (x != null) { int cmp = key.CompareTo(x.key); if (cmp < 0) x = x.left; else if (cmp > 0) x = x.right; else return x.val; } return default(Value); } /** * Does this symbol table contain the given key? * @param key the key * @return {@code true} if this symbol table contains {@code key} and * {@code false} otherwise * @throws IllegalArgumentException if {@code key} is {@code null} */ public bool contains(Key key) { return get(key) != null; } /*************************************************************************** * Red-black tree insertion. ***************************************************************************/ /** * Inserts the specified key-value pair into the symbol table, overwriting the old * value with the new value if the symbol table already contains the specified key. * Deletes the specified key (and its associated value) from this symbol table * if the specified value is {@code null}. * * @param key the key * @param val the value * @throws IllegalArgumentException if {@code key} is {@code null} */ public void put(Key key, Value val) { if (key == null) throw new ArgumentException("first argument to put() is null"); if (val == null) { delete(key); return; } root = put(root, key, val); root.color = BLACK; // assert check(); } // insert the key-value pair in the subtree rooted at h private Node put(Node h, Key key, Value val) { if (h == null) return new Node(key, val, RED, 1); int cmp = key.CompareTo(h.key); if (cmp < 0) h.left = put(h.left, key, val); else if (cmp > 0) h.right = put(h.right, key, val); else h.val = val; // fix-up any right-leaning links if (isRed(h.right) && !isRed(h.left)) h = rotateLeft(h); if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h); if (isRed(h.left) && isRed(h.right)) flipColors(h); h.size = size(h.left) + size(h.right) + 1; return h; } /*************************************************************************** * Red-black tree deletion. ***************************************************************************/ /** * Removes the smallest key and associated value from the symbol table. * @throws NoSuchElementException if the symbol table is empty */ public void deleteMin() { if (isEmpty()) throw new ArgumentException("BST underflow"); // if both children of root are black, set root to red if (!isRed(root.left) && !isRed(root.right)) root.color = RED; root = deleteMin(root); if (!isEmpty()) root.color = BLACK; // assert check(); } // delete the key-value pair with the minimum key rooted at h private Node deleteMin(Node h) { if (h.left == null) return null; if (!isRed(h.left) && !isRed(h.left.left)) h = moveRedLeft(h); h.left = deleteMin(h.left); return balance(h); } /** * Removes the largest key and associated value from the symbol table. * @throws NoSuchElementException if the symbol table is empty */ public void deleteMax() { if (isEmpty()) throw new ArgumentException("BST underflow"); // if both children of root are black, set root to red if (!isRed(root.left) && !isRed(root.right)) root.color = RED; root = deleteMax(root); if (!isEmpty()) root.color = BLACK; // assert check(); } // delete the key-value pair with the maximum key rooted at h private Node deleteMax(Node h) { if (isRed(h.left)) h = rotateRight(h); if (h.right == null) return null; if (!isRed(h.right) && !isRed(h.right.left)) h = moveRedRight(h); h.right = deleteMax(h.right); return balance(h); } /** * Removes the specified key and its associated value from this symbol table * (if the key is in this symbol table). * * @param key the key * @throws IllegalArgumentException if {@code key} is {@code null} */ public void delete(Key key) { if (key == null) throw new ArgumentException("argument to delete() is null"); if (!contains(key)) return; // if both children of root are black, set root to red if (!isRed(root.left) && !isRed(root.right)) root.color = RED; root = delete(root, key); if (!isEmpty()) root.color = BLACK; // assert check(); } // delete the key-value pair with the given key rooted at h private Node delete(Node h, Key key) { // assert get(h, key) != null; if (key.CompareTo(h.key) < 0) { if (!isRed(h.left) && !isRed(h.left.left)) h = moveRedLeft(h); h.left = delete(h.left, key); } else { if (isRed(h.left)) h = rotateRight(h); if (key.CompareTo(h.key) == 0 && (h.right == null)) return null; if (!isRed(h.right) && !isRed(h.right.left)) h = moveRedRight(h); if (key.CompareTo(h.key) == 0) { Node x = min(h.right); h.key = x.key; h.val = x.val; // h.val = get(h.right, min(h.right).key); // h.key = min(h.right).key; h.right = deleteMin(h.right); } else h.right = delete(h.right, key); } return balance(h); } /*************************************************************************** * Red-black tree helper functions. ***************************************************************************/ // make a left-leaning link lean to the right private Node rotateRight(Node h) { // assert (h != null) && isRed(h.left); Node x = h.left; h.left = x.right; x.right = h; x.color = x.right.color; x.right.color = RED; x.size = h.size; h.size = size(h.left) + size(h.right) + 1; return x; } // make a right-leaning link lean to the left private Node rotateLeft(Node h) { // assert (h != null) && isRed(h.right); Node x = h.right; h.right = x.left; x.left = h; x.color = x.left.color; x.left.color = RED; x.size = h.size; h.size = size(h.left) + size(h.right) + 1; return x; } // flip the colors of a node and its two children private void flipColors(Node h) { // h must have opposite color of its two children // assert (h != null) && (h.left != null) && (h.right != null); // assert (!isRed(h) && isRed(h.left) && isRed(h.right)) // || (isRed(h) && !isRed(h.left) && !isRed(h.right)); h.color = !h.color; h.left.color = !h.left.color; h.right.color = !h.right.color; } // Assuming that h is red and both h.left and h.left.left // are black, make h.left or one of its children red. private Node moveRedLeft(Node h) { // assert (h != null); // assert isRed(h) && !isRed(h.left) && !isRed(h.left.left); flipColors(h); if (isRed(h.right.left)) { h.right = rotateRight(h.right); h = rotateLeft(h); flipColors(h); } return h; } // Assuming that h is red and both h.right and h.right.left // are black, make h.right or one of its children red. private Node moveRedRight(Node h) { // assert (h != null); // assert isRed(h) && !isRed(h.right) && !isRed(h.right.left); flipColors(h); if (isRed(h.left.left)) { h = rotateRight(h); flipColors(h); } return h; } // restore red-black tree invariant private Node balance(Node h) { // assert (h != null); if (isRed(h.right)) h = rotateLeft(h); if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h); if (isRed(h.left) && isRed(h.right)) flipColors(h); h.size = size(h.left) + size(h.right) + 1; return h; } /*************************************************************************** * Utility functions. ***************************************************************************/ /** * Returns the height of the BST (for debugging). * @return the height of the BST (a 1-node tree has height 0) */ public int height() { return height(root); } private int height(Node x) { if (x == null) return -1; return 1 + Math.Max(height(x.left), height(x.right)); } /*************************************************************************** * Ordered symbol table methods. ***************************************************************************/ /** * Returns the smallest key in the symbol table. * @return the smallest key in the symbol table * @throws NoSuchElementException if the symbol table is empty */ public Key min() { if (isEmpty()) throw new ArgumentException("called min() with empty symbol table"); return min(root).key; } // the smallest key in subtree rooted at x; null if no such key private Node min(Node x) { // assert x != null; if (x.left == null) return x; else return min(x.left); } /** * Returns the largest key in the symbol table. * @return the largest key in the symbol table * @throws NoSuchElementException if the symbol table is empty */ public Key max() { if (isEmpty()) throw new ArgumentException("called max() with empty symbol table"); return max(root).key; } // the largest key in the subtree rooted at x; null if no such key private Node max(Node x) { // assert x != null; if (x.right == null) return x; else return max(x.right); } /** * Returns the largest key in the symbol table less than or equal to {@code key}. * @param key the key * @return the largest key in the symbol table less than or equal to {@code key} * @throws NoSuchElementException if there is no such key * @throws IllegalArgumentException if {@code key} is {@code null} */ public Key floor(Key key) { if (key == null) throw new ArgumentException("argument to floor() is null"); if (isEmpty()) throw new ArgumentException("called floor() with empty symbol table"); Node x = floor(root, key); if (x == null) return default(Key); else return x.key; } // the largest key in the subtree rooted at x less than or equal to the given key private Node floor(Node x, Key key) { if (x == null) return null; int cmp = key.CompareTo(x.key); if (cmp == 0) return x; if (cmp < 0) return floor(x.left, key); Node t = floor(x.right, key); if (t != null) return t; else return x; } /** * Returns the smallest key in the symbol table greater than or equal to {@code key}. * @param key the key * @return the smallest key in the symbol table greater than or equal to {@code key} * @throws NoSuchElementException if there is no such key * @throws IllegalArgumentException if {@code key} is {@code null} */ public Key ceiling(Key key) { if (key == null) throw new ArgumentException("argument to ceiling() is null"); if (isEmpty()) throw new ArgumentException("called ceiling() with empty symbol table"); Node x = ceiling(root, key); if (x == null) return default(Key); else return x.key; } // the smallest key in the subtree rooted at x greater than or equal to the given key private Node ceiling(Node x, Key key) { if (x == null) return null; int cmp = key.CompareTo(x.key); if (cmp == 0) return x; if (cmp > 0) return ceiling(x.right, key); Node t = ceiling(x.left, key); if (t != null) return t; else return x; } /** * Return the kth smallest key in the symbol table. * @param k the order statistic * @return the {@code k}th smallest key in the symbol table * @throws IllegalArgumentException unless {@code k} is between 0 and * <em>n</em>–1 */ public Key select(int k) { if (k < 0 || k >= size()) { throw new ArgumentException("called select() with invalid argument: " + k); } Node x = select(root, k); return x.key; } // the key of rank k in the subtree rooted at x private Node select(Node x, int k) { // assert x != null; // assert k >= 0 && k < size(x); int t = size(x.left); if (t > k) return select(x.left, k); else if (t < k) return select(x.right, k - t - 1); else return x; } /** * Return the number of keys in the symbol table strictly less than {@code key}. * @param key the key * @return the number of keys in the symbol table strictly less than {@code key} * @throws IllegalArgumentException if {@code key} is {@code null} */ public int rank(Key key) { if (key == null) throw new ArgumentException("argument to rank() is null"); return rank(key, root); } // number of keys less than key in the subtree rooted at x private int rank(Key key, Node x) { if (x == null) return 0; int cmp = key.CompareTo(x.key); if (cmp < 0) return rank(key, x.left); else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right); else return size(x.left); } /*************************************************************************** * Range count and range search. ***************************************************************************/ /** * Returns all keys in the symbol table as an {@code Iterable}. * To iterate over all of the keys in the symbol table named {@code st}, * use the foreach notation: {@code for (Key key : st.keys())}. * @return all keys in the symbol table as an {@code Iterable} */ public IEnumerable<Key> keys() { if (isEmpty()) return new Queue<Key>(); return keys(min(), max()); } /** * Returns all keys in the symbol table in the given range, * as an {@code Iterable}. * * @param lo minimum endpoint * @param hi maximum endpoint * @return all keys in the sybol table between {@code lo} * (inclusive) and {@code hi} (inclusive) as an {@code Iterable} * @throws IllegalArgumentException if either {@code lo} or {@code hi} * is {@code null} */ public IEnumerable<Key> keys(Key lo, Key hi) { if (lo == null) throw new ArgumentException("first argument to keys() is null"); if (hi == null) throw new ArgumentException("second argument to keys() is null"); Queue<Key> queue = new Queue<Key>(); // if (isEmpty() || lo.compareTo(hi) > 0) return queue; keys(root, queue, lo, hi); return queue; } // add the keys between lo and hi in the subtree rooted at x // to the queue private void keys(Node x, Queue<Key> queue, Key lo, Key hi) { if (x == null) return; int cmplo = lo.CompareTo(x.key); int cmphi = hi.CompareTo(x.key); if (cmplo < 0) keys(x.left, queue, lo, hi); if (cmplo <= 0 && cmphi >= 0) queue.Enqueue(x.key); if (cmphi > 0) keys(x.right, queue, lo, hi); } /** * Returns the number of keys in the symbol table in the given range. * * @param lo minimum endpoint * @param hi maximum endpoint * @return the number of keys in the sybol table between {@code lo} * (inclusive) and {@code hi} (inclusive) * @throws IllegalArgumentException if either {@code lo} or {@code hi} * is {@code null} */ public int size(Key lo, Key hi) { if (lo == null) throw new ArgumentException("first argument to size() is null"); if (hi == null) throw new ArgumentException("second argument to size() is null"); if (lo.CompareTo(hi) > 0) return 0; if (contains(hi)) return rank(hi) - rank(lo) + 1; else return rank(hi) - rank(lo); } /*************************************************************************** * Check integrity of red-black tree data structure. ***************************************************************************/ private bool check() { if (!isBST()) Console.WriteLine("Not in symmetric order"); if (!isSizeConsistent()) Console.WriteLine("Subtree counts not consistent"); // if (!isRankConsistent()) Console.WriteLine("Ranks not consistent"); if (!is23()) Console.WriteLine("Not a 2-3 tree"); if (!isBalanced()) Console.WriteLine("Not balanced"); return isBST() && isSizeConsistent() /*&& isRankConsistent()*/ && is23() && isBalanced(); } // does this binary tree satisfy symmetric order? // Note: this test also ensures that data structure is a binary tree since order is strict private bool isBST() { return isBST(root, default(Key), default(Key)); } // is the tree rooted at x a BST with all keys strictly between min and max // (if min or max is null, treat as empty constraint) // Credit: Bob Dondero's elegant solution private bool isBST(Node x, Key min, Key max) { if (x == null) return true; if (min != null && x.key.CompareTo(min) <= 0) return false; if (max != null && x.key.CompareTo(max) >= 0) return false; return isBST(x.left, min, x.key) && isBST(x.right, x.key, max); } // are the size fields correct? private bool isSizeConsistent() { return isSizeConsistent(root); } private bool isSizeConsistent(Node x) { if (x == null) return true; if (x.size != size(x.left) + size(x.right) + 1) return false; return isSizeConsistent(x.left) && isSizeConsistent(x.right); } // check that ranks are consistent /* private bool isRankConsistent() { for (int i = 0; i < size(); i++) if (i != rank(select(i))) return false; for (Key key in keys()) if (key.CompareTo(select(rank(key))) != 0) return false; return true; } */ // Does the tree have no red right links, and at most one (left) // red links in a row on any path? private bool is23() { return is23(root); } private bool is23(Node x) { if (x == null) return true; if (isRed(x.right)) return false; if (x != root && isRed(x) && isRed(x.left)) return false; return is23(x.left) && is23(x.right); } // do all paths from root to leaf have same number of black edges? private bool isBalanced() { int black = 0; // number of black links on path from root to min Node x = root; while (x != null) { if (!isRed(x)) black++; x = x.left; } return isBalanced(root, black); } // does every path from the root to a leaf have the given number of black links? private bool isBalanced(Node x, int black) { if (x == null) return black == 0; if (!isRed(x)) black--; return isBalanced(x.left, black) && isBalanced(x.right, black); } //-------- iteraror System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator() { return GetEnumerator(); } public IEnumerator<Key> GetEnumerator() { return null;// NotImplementedException; } } } |