From JaseWick, source…
Example shows how to search, using Binary Tree, built on 2 pointers linked list
Also a lot of other methods in BST class…
Main and tests
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace BinarySearchTreeExample { class Program { static void Main(string[] args) { //Standart_TestClient sc = new Standart_TestClient(); //sc.Execute(); FrequencyCounter_TestClient fct = new FrequencyCounter_TestClient(); fct.Execute(); Console.ReadLine(); } } public class Standart_TestClient { string[] a = { "S", "E", "A", "R", "C", "H", "E", "X", "A", "M", "P", "L", "E" }; public void Execute() { BST<string, int> st = new BST<string, int>(); //Array.Sort(a); // we sort because we use binary search inside //adding for (int i = 0; i < a.Length; i++) { st.put(a[i], i); } if (st.contains("X")) Console.WriteLine("Yes! Contains X"); st.ConsoleDisplay(); st.delete("L"); // Console.WriteLine(); st.ConsoleDisplay(); } } public class FrequencyCounter_TestClient { string[] a = { "S", "E", "A", "R", "C", "H", "E", "X", "A", "M", "P", "L", "E" }; public void Execute() { BST<string, int> st = new BST<string, int>(); //adding for (int i = 0; i < a.Length; i++) { // to Key we write Word, to Value we write Frequency if (!st.contains(a[i])) st.put(a[i], 1); else st.put(a[i], st.get(a[i]) + 1); } st.ConsoleDisplay(); // search max frequent word string maxFrequentWord = " "; st.put(maxFrequentWord, 0); foreach (var val in st) { if ((val != null) && (st.get(val) > st.get(maxFrequentWord))) maxFrequentWord = val; } Console.WriteLine("maxFrequentWord=" + maxFrequentWord + " maxFrequency " + st.get(maxFrequentWord)); st.ConsoleDisplay(); } } } |
Только Get и Put
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
class BST<Key, Value> : IEnumerable<Key> where Key : IComparable { private Node root; public class Node { public Key key; public Value val; public Node left,right; // left and right subtrees public int size; // number of nodes in subtree public Node(Key key, Value val, int size) { this.key = key; this.val = val; this.size = size; } } public Value Get(Key key) { return Get(root, key); } private Value Get(Node x, Key key) { if (key == null) throw new ArgumentException("called get() with a null key"); if (x == null) return default(Value); int cmp = key.CompareTo(x.key); if (cmp < 0) return Get(x.left, key); else if (cmp > 0) return Get(x.right, key); else return x.val; } public void Put(Key key, Value val) { root = Put(root, key, val); } public Node Put(Node x,Key key,Value val) { if (x == null) return new Node(key,val,1); int cmp = key.CompareTo(x.key); if (cmp < 0) x.left = Put(x.left, key, val); if (cmp > 0) x.right = Put(x.right, key, val); else x.val = val; x.size = 1 + Size(x.left) + Size(x.right); return x; } // public int Size(Node x) { if (x == null) return 0; else return x.size; } private void TraverseBinaryTreeKey(Node x, ref Queue<Key> q) { if (x != null) { q.Enqueue(x.key); TraverseBinaryTreeKey(x.left, ref q); TraverseBinaryTreeKey(x.right, ref q); } } public IEnumerator<Key> GetEnumerator() { Queue<Key> q = new Queue<Key>(); TraverseBinaryTreeKey(root, ref q); return q.GetEnumerator(); } IEnumerator IEnumerable.GetEnumerator() { return GetEnumerator(); } |
Binary Search tree class…
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
using System; using System.Collections.Generic; using System.Diagnostics; using System.Linq; using System.Text; using System.Threading.Tasks; namespace BinarySearchTreeExample { // binary search tree public class BST<Key, Value> : IEnumerable<Key> where Key : IComparable { private Node root; // root of BST private class Node { public Key key; // sorted by key public Value val; // associated data public Node left, right; // left and right subtrees public int size; // number of nodes in subtree public Node(Key key, Value val, int size) { this.key = key; this.val = val; this.size = size; } } /** * Initializes an empty symbol table. */ public BST() { } /** * Returns true if this symbol table is empty. * @return {@code true} if this symbol table is empty; {@code false} otherwise */ public bool isEmpty() { return size() == 0; } /** * Returns the number of key-value pairs in this symbol table. * @return the number of key-value pairs in this symbol table */ public int size() { return size(root); } // return number of key-value pairs in BST rooted at x private int size(Node x) { if (x == null) return 0; else return x.size; } /** * Does this symbol table contain the given key? * * @param key the key * @return {@code true} if this symbol table contains {@code key} and * {@code false} otherwise * @throws IllegalArgumentException if {@code key} is {@code null} */ public bool contains(Key key) { if (key == null) throw new ArgumentException("argument to contains() is null"); return get(key) != null; } /** * Returns the value associated with the given key. * * @param key the key * @return the value associated with the given key if the key is in the symbol table * and {@code null} if the key is not in the symbol table * @throws IllegalArgumentException if {@code key} is {@code null} */ public Value get(Key key) { return get(root, key); } private Value get(Node x, Key key) { if (key == null) throw new ArgumentException("called get() with a null key"); if (x == null) return default(Value); int cmp = key.CompareTo(x.key); if (cmp < 0) return get(x.left, key); else if (cmp > 0) return get(x.right, key); else return x.val; } /** * Inserts the specified key-value pair into the symbol table, overwriting the old * value with the new value if the symbol table already contains the specified key. * Deletes the specified key (and its associated value) from this symbol table * if the specified value is {@code null}. * * @param key the key * @param val the value * @throws IllegalArgumentException if {@code key} is {@code null} */ public void put(Key key, Value val) { if (key == null) throw new ArgumentException("calledput() with a null key"); if (val == null) { delete(key); return; } root = put(root, key, val); Trace.Assert(check()); } private Node put(Node x, Key key, Value val) { if (x == null) return new Node(key, val, 1); int cmp = key.CompareTo(x.key); if (cmp < 0) x.left = put(x.left, key, val); else if (cmp > 0) x.right = put(x.right, key, val); else x.val = val; x.size = 1 + size(x.left) + size(x.right); return x; } /** * Removes the smallest key and associated value from the symbol table. * * @throws NoSuchElementException if the symbol table is empty */ public void deleteMin() { if (isEmpty()) throw new ArgumentException("Symbol table underflow"); root = deleteMin(root); Trace.Assert(check()); } private Node deleteMin(Node x) { if (x.left == null) return x.right; x.left = deleteMin(x.left); x.size = size(x.left) + size(x.right) + 1; return x; } /** * Removes the largest key and associated value from the symbol table. * * @throws NoSuchElementException if the symbol table is empty */ public void deleteMax() { if (isEmpty()) throw new ArgumentException("Symbol table underflow"); root = deleteMax(root); Trace.Assert(check()); } private Node deleteMax(Node x) { if (x.right == null) return x.left; x.right = deleteMax(x.right); x.size = size(x.left) + size(x.right) + 1; return x; } /** * Removes the specified key and its associated value from this symbol table * (if the key is in this symbol table). * * @param key the key * @throws IllegalArgumentException if {@code key} is {@code null} */ public void delete(Key key) { if (key == null) throw new ArgumentException("called delete() with a null key"); root = delete(root, key); Trace.Assert(check()); } private Node delete(Node x, Key key) { if (x == null) return null; int cmp = key.CompareTo(x.key); if (cmp < 0) x.left = delete(x.left, key); else if (cmp > 0) x.right = delete(x.right, key); else { if (x.right == null) return x.left; if (x.left == null) return x.right; Node t = x; x = min(t.right); x.right = deleteMin(t.right); x.left = t.left; } x.size = size(x.left) + size(x.right) + 1; return x; } /** * Returns the smallest key in the symbol table. * * @return the smallest key in the symbol table * @throws NoSuchElementException if the symbol table is empty */ public Key min() { if (isEmpty()) throw new ArgumentException("called min() with empty symbol table"); return min(root).key; } private Node min(Node x) { if (x.left == null) return x; else return min(x.left); } /** * Returns the largest key in the symbol table. * * @return the largest key in the symbol table * @throws NoSuchElementException if the symbol table is empty */ public Key max() { if (isEmpty()) throw new ArgumentException("called max() with empty symbol table"); return max(root).key; } private Node max(Node x) { if (x.right == null) return x; else return max(x.right); } /** * Returns the largest key in the symbol table less than or equal to {@code key}. * * @param key the key * @return the largest key in the symbol table less than or equal to {@code key} * @throws NoSuchElementException if there is no such key * @throws IllegalArgumentException if {@code key} is {@code null} */ public Key floor(Key key) { if (key == null) throw new ArgumentException("argument to floor() is null"); if (isEmpty()) throw new ArgumentException("called floor() with empty symbol table"); Node x = floor(root, key); if (x == null) return default(Key); else return x.key; } private Node floor(Node x, Key key) { if (x == null) return null; int cmp = key.CompareTo(x.key); if (cmp == 0) return x; if (cmp < 0) return floor(x.left, key); Node t = floor(x.right, key); if (t != null) return t; else return x; } /** * Returns the smallest key in the symbol table greater than or equal to {@code key}. * * @param key the key * @return the smallest key in the symbol table greater than or equal to {@code key} * @throws NoSuchElementException if there is no such key * @throws IllegalArgumentException if {@code key} is {@code null} */ public Key ceiling(Key key) { if (key == null) throw new ArgumentException("argument to ceiling() is null"); if (isEmpty()) throw new ArgumentException("called ceiling() with empty symbol table"); Node x = ceiling(root, key); if (x == null) return default(Key); else return x.key; } private Node ceiling(Node x, Key key) { if (x == null) return null; int cmp = key.CompareTo(x.key); if (cmp == 0) return x; if (cmp < 0) { Node t = ceiling(x.left, key); if (t != null) return t; else return x; } return ceiling(x.right, key); } /** * Return the kth smallest key in the symbol table. * * @param k the order statistic * @return the {@code k}th smallest key in the symbol table * @throws IllegalArgumentException unless {@code k} is between 0 and * <em>n</em>–1 */ public Key select(int k) { if (k < 0 || k >= size()) { throw new ArgumentException("called select() with invalid argument: " + k); } Node x = select(root, k); return x.key; } // Return key of rank k. private Node select(Node x, int k) { if (x == null) return null; int t = size(x.left); if (t > k) return select(x.left, k); else if (t < k) return select(x.right, k - t - 1); else return x; } /** * Return the number of keys in the symbol table strictly less than {@code key}. * * @param key the key * @return the number of keys in the symbol table strictly less than {@code key} * @throws IllegalArgumentException if {@code key} is {@code null} */ public int rank(Key key) { if (key == null) throw new ArgumentException("argument to rank() is null"); return rank(key, root); } // Number of keys in the subtree less than key. private int rank(Key key, Node x) { if (x == null) return 0; int cmp = key.CompareTo(x.key); if (cmp < 0) return rank(key, x.left); else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right); else return size(x.left); } //-------- iteraror System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator() { return GetEnumerator(); } /* public void InOrder_Rec(TNode root) { if (root != null) { InOrder_Rec(root.Left); Console.Write(root.Data +" "); InOrder_Rec(root.Right); } } */ private void TraverseBinaryTreeKey(Node x, ref Queue<Key> q) { if (x != null) { q.Enqueue(x.key); TraverseBinaryTreeKey(x.left,ref q); TraverseBinaryTreeKey(x.right,ref q); } } private void TraverseBinaryTreeValue(Node x, ref Queue<Value> q) { if (x != null) { q.Enqueue(x.val); TraverseBinaryTreeValue(x.left, ref q); TraverseBinaryTreeValue(x.right, ref q); } } public IEnumerator<Key> GetEnumerator() { Queue<Key> q = new Queue<Key>(); TraverseBinaryTreeKey(root, ref q); return q.GetEnumerator(); //foreach (Key key in q) yield return q.Dequeue(key); } public void ConsoleDisplay() { Console.WriteLine(); Console.WriteLine("key" + " " + "val"); Queue<Key> q = new Queue<Key>(); TraverseBinaryTreeKey(root, ref q); Queue<Value> v = new Queue<Value>(); TraverseBinaryTreeValue(root, ref v); Console.WriteLine(); foreach (Key key in q) Console.Write(key + " "); Console.WriteLine(); foreach (Value val in v) Console.Write(val + " "); } /************************************************************************* * Check integrity of BST data structure. ***************************************************************************/ private bool check() { //if (!isBST()) StdOut.println("Not in symmetric order"); if (!isSizeConsistent()) Console.WriteLine("Subtree counts not consistent");// StdOut.println("Subtree counts not consistent"); //if (!isRankConsistent()) StdOut.println("Ranks not consistent"); return isBST() && isSizeConsistent();// && isRankConsistent(); } // does this binary tree satisfy symmetric order? // Note: this test also ensures that data structure is a binary tree since order is strict private bool isBST() { return isBST(root, default(Key), default(Key)); } // is the tree rooted at x a BST with all keys strictly between min and max // (if min or max is null, treat as empty constraint) // Credit: Bob Dondero's elegant solution private bool isBST(Node x, Key min, Key max) { if (x == null) return true; if (min != null && x.key.CompareTo(min) <= 0) return false; if (max != null && x.key.CompareTo(max) >= 0) return false; return isBST(x.left, min, x.key) && isBST(x.right, x.key, max); } // are the size fields correct? private bool isSizeConsistent() { return isSizeConsistent(root); } private bool isSizeConsistent(Node x) { if (x == null) return true; if (x.size != size(x.left) + size(x.right) + 1) return false; return isSizeConsistent(x.left) && isSizeConsistent(x.right); } // check that ranks are consistent /* private bool isRankConsistent() { for (int i = 0; i < size(); i++) if (i != rank(select(i))) return false; for (Key key in keys()) if (key.CompareTo(select(rank(key))) != 0) return false; return true; } */ } } |